手机浏览器扫描二维码访问
其实分形这个东西,在我们生活中还是比较常见的。
举个栗子~~
雪花!
不是雪花啤酒啊,是雪花!
一朵雪花,你用肉眼看的话,它是形状是一个六角形。
当你把它放在显微镜下,放大几百数千倍后,看到的细节部分形状也是六角形。
也就是说,一朵雪花,是由n个极其微小的六角形晶体组成的较大的六角形晶体!
当然,还有精子,也符合分形原理。
于是人们便用数学方法去表示这些分形现象。
经过人们几百年的研究,分形理论,在数学领域,有了三个非常重要的模型。
他们分别是:三分康托集,koch曲线,julia集。
这次两位选手挑战的项目,就与朱利亚集和(julia集)有关。
朱利亚集和的定义很简单:z(n+1)=z(n)2+c(c是常数)
定义式很简单,一个普通的高中生就能看懂其中的意思。
但朱利亚集的神奇之处在于:其数学定义非常简单,但他生成的图像却复杂的令人不可思议,其中包含了深邃的数学原理——或者还有我们人类自己臆想的哲学。
嗯,已经涉及到了哲♂学问题。
一个朱利亚集,简单来说,就是将z(n+1)=z(n)2+c这个公式不断迭代形成的。
迭代大部分人应该都知道。
比如说:考虑函数f(z)=z2-075。固定z0的值后,我们可以通过不断地迭代算出一系列的z值:z1=f(z0),z2=f(z1),z3=f(z2),…。比如,当z0=1时,我们可以依次迭代出:
z1=f(10)=102–075=025
z2=f(025)=0252–075=-06875
…………
z5=f(-06731)=(-06731)2–075=-02970
………
可以看出,z(n)这个函数,在不断的迭代之后,结果会逐渐趋于某一个值。
当然,这只是z(0)=1的变化。
数学家对朱利亚集经过一系列不可描述的研究之后,发现并不是所有的z(0)值都能组成有界的分形图形。
只有z(0)在【-15,15】范围内,z(n)的值才是有限的。
也就说,只有在【-15,15】之内,朱利亚集才能构成有界的分形图形。
而这一次,节目组将z(0)的值固定,针对参数c的变化进行出题。
参数c,可写为c(x,y)=x+iy。
c的值,由一个实部x,和一个虚部y来决定。
校花的透视高手 逍遥梦路 清香木 超脑太监 否 我的师门有点强 主角猎杀者 幻想世界大穿越 开局顶流的我怎么会糊 永恒圣王 最强医圣林奇 诸界末日在线 最终猎杀 网游大相师 全能游戏设计师 超级母舰 无垠 大周王侯 念念不忘 全集 重生之国民男神
...
甜宠无虐+日更+萌宝+智脑一个大佬和重生来的小媳妇甜蜜日常!一个娱乐小透明凭借智脑逆袭成超级影后的故事~...
关于抢救大明朝朱慈烺此贼比汉奸还奸,比鞑子还凶,比额李自成还能蛊惑人心!闯王李自成立马九宫山,遥望东南,感慨万千。慈烺此子忤逆不孝,奸诈凶残,简直是曹操再世,司马复生,让他当了皇帝,全天下的...
王虎穿越了,而且悲催的成了五指山下的一只老虎。我去,这是要做猴哥虎皮裙的节奏?王虎表示不服。作为一只21世纪穿越来的新时代老虎,怎么着也要和猴哥拜把子,做兄弟啊!此时此刻齐天大圣孙悟空被压五行山马上就满五百年,再有十年,波澜壮阔,影响三界格局的西天取经之旅就要开始,看王虎如何在其中搅动三界风云,与猴哥一起再掀万...
...
...