手机浏览器扫描二维码访问
高斯知道n次方程必然有n个解,那么对于x^3=1这样的方程,除了x=1以外,还有其他两个解吗?
这就需要试图在复数域里找了。
后来高斯找到了x=-12+√3*i2和x=-12-√3*i2这两个解也符合这个方程。
高斯也轻松知道x^4=1,有1、-1、i、-i这四个解。
高斯画出了复数域坐标,发现3次的解形成一个等边三角形的形状,4次方的解形成一个正方形的形状。
心想,是不是5次的解是个正五边形,n次的解是正n边形?
后来一个个解出来发现还真是,而且反而还能用这个方法反推出n次多边形的n个解来。没个多边形的点都必然有个x=1,i=0这个点是解。
这就是分圆域的开端,成为以后数学家研究的对象,并且有很多作用。
然后高斯开始歪歪的想,该不会有分球域这个东西。毕竟分圆域如此优美和给力,分球域如此自然而美妙的想法,不该会没有的,然而怎么会有分球域呢?
该不会有个j这样的东西,有实部分、i部分、j部分共同组成更加复杂的数域吧。
然后这样的数域的x的n次方是分球的吧?
那么代数基本定理里没面如此引入如此复杂的数域,就不是n次方程有n个解了,而是更加复杂的一种模式了。
这到底是个什么样的东西呢?高斯被另外一件事跟打断了。
喜欢数学心请大家收藏:()数学心
跨越阶层的恋爱 包青天断案传奇故事汇 春过辽河滩 神奇宝贝:开局十连抽,获得梦幻 好运撞末日 偏偏宠上你 剑神韩友平第一部 造孽啊,曹贼竟是我自己 沉睡千年醒来,749局找上门 都市重生:我在七日世界刷神宠 高冷学神之攻略手册 开局成为峰主,打造万古不朽仙门 柯南!快看,你爸爸过来了! 大清话事人 邪灵战神 在明末奋斗 一本杂录 尘封的仙路 开局被渣,反手投资女帝无敌 仙骨
...
...
...
一个集合口袋妖怪,数码宝贝等等游戏,动漫的游戏正式登陆全球,谁才是最强的训练家,谁才是游戏里最强的宠物,且看罗炎称霸漫兽竞技场,一步一步从无名小卒爬上神坛。...
最强系统,我就是最强!还有谁?叶风看着众多的天骄,脸色淡定无比!获得最强系统,经验可复制对方的功法神通,可升级功法神通品阶无所不能,唯有最强!碾压苍穹,打爆世间一切不服者!...
一朝重生,亲爹从军阵亡,亲娘病死,留下体弱的弟弟和青砖瓦房几间。无奈家有极品亲戚,占了我家房还想害我姐弟性命!幸得好心夫妻垂帘,才有这安稳日子过。偶然山中救得老道一位,得其倾囊相授修得一身好武艺。骤闻亲爹消息,变身潇洒少年郎,入了天下闻名的孟家军,立军功当将军,可是那个总阴魂不散的小王爷是要搞哪样?虾米?威胁我?...