手机浏览器扫描二维码访问
正如大家所想,矛盾的源头就是,9个点不见得能唯一地确定出三次曲线的方程,因为不是每个点的位置都能给我们带来足够的信息。
Euler试图向人们解释这样一件事情:曲线上的9个点虽然给出了9个不同的方程,但有时它们并不能唯一地解出那9个未知数,因为有些方程是废的。
在没有线性代数的年代,解释这件事情并不容易。
Euler举了一个最简单的例子:方程组
3x?2y=5
4y=6x?10
表面上存在唯一解,但事实上两个方程的本质相同——第一个方程乘以2再移项后就直接变成第二个方程了。
换句话说,后一个方程并没有给我们带来新的信息,有它没它都一样。
当然,这只是一个最为简单的例子。
在当时,真正让人大开眼界的则是Euler文中给出的三元一次方程组:
2x?3y+5z=8
3x?5y+7z=9
x?y+3z=7
这个方程组也没有唯一解,原因就很隐蔽了:后两个方程之和其实是第一个方程的两倍,换句话说第一个方程本来就能由另外两个方程推出来。
因此,整个方程组本质上只有两个不同的方程,它们不足以确定出三个未知数来。
Euler还给出了一个四元一次方程组的例子,向人们展示了更加复杂的情况。
类似地,9个九元一次方程当然也会因为出现重复信息而不存在唯一解,不过具体情况几乎无法预料:很可能方程(1)就是方程(2)和方程(5)的差的多少多少倍,也有可能方程(7)和(9)的差恰是前三个方程的和。
究竟什么叫做一个方程“提供了新的信息”,用什么来衡量一个方程组里的信息量,怎样的方程组才会有唯一解?
Euler承认,“要想给出一个一般情况下的公式是很困难的”。
此时大家或许能体会到,Euler提出的这些遗留问题太具启发性了,当时的数学研究者们看到之后必然是浑身血液沸腾。
包括Cramer在内的数学家们沿着Euler的思路继续想下去,一个强大的数学新工具——线性代数——逐渐开始成型。
没错,这个Cramer正是后来提出线性代数一大基本定理——Cramer法则——的那个人。
喜欢数学心请大家收藏:()数学心
开局成为峰主,打造万古不朽仙门 在明末奋斗 好运撞末日 造孽啊,曹贼竟是我自己 神奇宝贝:开局十连抽,获得梦幻 邪灵战神 沉睡千年醒来,749局找上门 尘封的仙路 都市重生:我在七日世界刷神宠 一本杂录 跨越阶层的恋爱 大清话事人 偏偏宠上你 仙骨 包青天断案传奇故事汇 开局被渣,反手投资女帝无敌 柯南!快看,你爸爸过来了! 高冷学神之攻略手册 剑神韩友平第一部 春过辽河滩
男人一辈子最值得骄傲的事里包括服一次役,当一回特种兵,和世界上最强的军人交手。还有,为自己的祖国奉献一次青春,为这片热土上的人民拼一次命。这些,庄严都做到了。(此书致敬每一位曾为国家奉献过青春,流过血洒过汗的共和国军人!读者群号764555748)...
...
玄幻爽文九天大陆,天穹之上有九条星河,亿万星辰,皆为武命星辰,武道之人,可沟通星辰,觉醒星魂,成武命修士。传说,九天大陆最为厉害的武修,每突破一个境界,便能开辟一扇星门,从而沟通一颗星辰,直至,让九重天上,都有自己的武命星辰,化身通天彻地的太古神王。亿万生灵诸天万界,秦问天笑看苍天,他要做天空,最亮的那颗星辰...
余庆阳一个搬砖二十年的老工程,梦回世纪之交,海河大学毕业,接老爸的班继续搬砖。用两辈子的行动告诉老师,搬砖不是因为我学习不好!是我命中注定要搬砖已有两本百万字完本书超级村主任最强退伍兵,可以放心入坑!大国工程书友群,群聊号码492691021新书重生之大国工匠...
...
本书架空,考据慎入 新书锦衣血途发布,欢迎收藏! 这里不是春秋战国,也不是东汉末年! 似曾相识的齐楚秦魏,截然不同的列国争雄! 来自现...